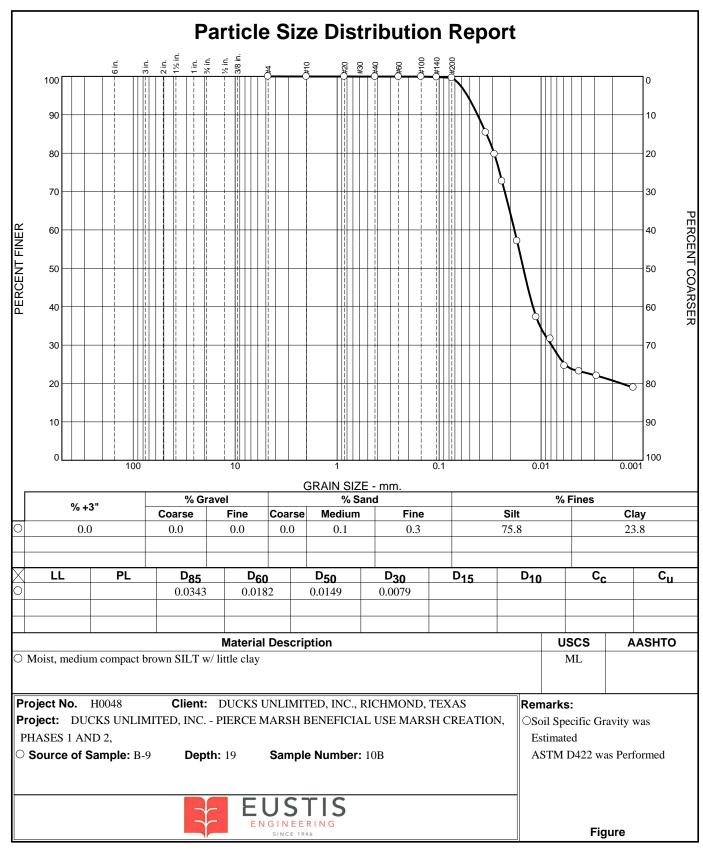
EUSTIS ENGINEERING SINCE 1946

LOG OF BORING AND TEST RESULTS

Ducks Unlimited, Inc. Pierce Marsh Beneficial Use Marsh Creation Phase 1


North of West Bay Near Galveston Island Galveston County, Texas **Boring: B-9**

Project No: H0048 Date: 07/14/2022 Latitude: 29.31772° Longitude: -94.96377°

Water Depth: See Text Total Depth: 40.0 ft

	le in	PP	SPT	S P L Symbol Visual Classification USC Sample		Depth	Water		isity	She	ear Te	sts	Atte	rberg l	imits	Other Tests			
	eet O —			R	Зуппоот		USC	Number	in Feet	Content %	Dry pcf	Wet pcf	Туре	ф	C psf	LL	PL	PI	Other rests
Γ'	٦ '	0.25				Moist, soft gray FAT CLAY	СН	1A 1B	0 1	52 61								-	
	7	0.25				Moist, very soft gray & tan FAT CLAY	СН	2A 2B	2 3	61 60	64	103	ОВ	0	229				
	5 -	0.50				Moist, verý soft graý & tan FAT CLAY	СН	3A 3B	4 5	56 58	67	105	ОВ	0	102				
	7	1.00				w/silt pockets Moist, stiff red, gray, & tan FAT CLAY w/trace of organic matter	СН	4A 4B	6 7	54 31						56	17	39	
	ا ه	1.00				w/trace of organic matter		5A 5B	8	37 33									
'	٦ -	0.25				Moist, very soft tan & gray LEAN CLAY	CL	6A 6B	10 11	42 58	80	113	ОВ	0	240				
	7	1.00				Moist, stiff reddish-brown & gray FAT CLAY	СН	7A 7B	12 13	24 25									
8/18/22	5 -	1.00				Moist, soft gray & tan FAT CLAY w/few silt	СН	8A 8B	14 15	36 24	102	127	ОВ	0	442				
	7	1.00				pockets Moist, stiff tan & brown LEAN CLAY w/trace of organic matter	CL	9A 9B	16 17	29 27						37	20	17	
H0048.GPJ	. 1	1.00				w/trace of organic matter Moist, medium compact brown SILT	ML	10A 10B	18 19	27 28									PD
H00H	0 -					Moist, medium compact brown SILT w/little clay													
90	7					Moist, medium stiff to stiff brown LEAN	CL	11A	23	28									
<u>9</u> 2	5 -	1.00				CLAY		11B	24	29									
BOR	1																		
STANDARD BORING LOG	_ 1	1.00				Moist, stiff brown & gray FAT CLAY w/trace of organic matter	СН	12A 12B	28 29	32 33	91	120	ОВ	0	1440				
MAT 3	0 -					.,													
S H	‡					Moist, very stiff brown & gray LEAN CLAY	CL	13A	33	36									
	5 -	1.00				Wioist, very still brown & gray LEAN CEAN		13B	34	35									
022.0	‡																		
4-18-2022.GLB	_ ‡	1.00				Moist, medium stiff tan & gray FAT CLAY	СН	14A 14B	38 39	40 42	77	110	ОВ	0	994				
	0 –																		
IBRA	‡																		
GINT_LIBRARY	5 -																		
	‡																		
EUSTIS	. <u>†</u>																		

NOTES: Boring B-9 was drilled in 6 in. of water.

Tested By: BH & KP Checked By: CD

GRAIN SIZE DISTRIBUTION TEST DATA

8/11/2022

Client: DUCKS UNLIMITED, INC., RICHMOND, TEXAS

Project: DUCKS UNLIMITED, INC. - PIERCE MARSH BENEFICIAL USE MARSH CREATION, PHASES 1 AND

2,

NORTH OF WEST BAY NEAR GALVESTON ISLAND, GALVESTON COUNTY, TEXAS. DU CONTRACT NO. TX-0-2. DU PROJECT NO. TX-194-4. DU TASK ORDER NO. 1

Project Number: H0048

Location: B-9

Depth: 19 Sample Number: 10B

Material Description: Moist, medium compact brown SILT w/ little clay

USCS Classification: ML

Testing Remarks: Soil Specific Gravity was Estimated

ASTM D422 was Performed

Tested by: BH & KP Checked by: CD

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 0.27

Tare Wt. = 0.00

Minus #200 from wash = 99.6%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained
69.92	0.00	0.00	#4	0.00	100.0	0.0
			#10	0.02	100.0	0.0
			#20	0.03	100.0	0.0
			#40	0.04	99.9	0.1
			#60	0.04	99.9	0.1
			#100	0.06	99.9	0.1
			#140	0.12	99.8	0.2
			#200	0.27	99.6	0.4

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =69.92

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -6.00

Meniscus correction only = 1.0Specific gravity of solids = 2.70

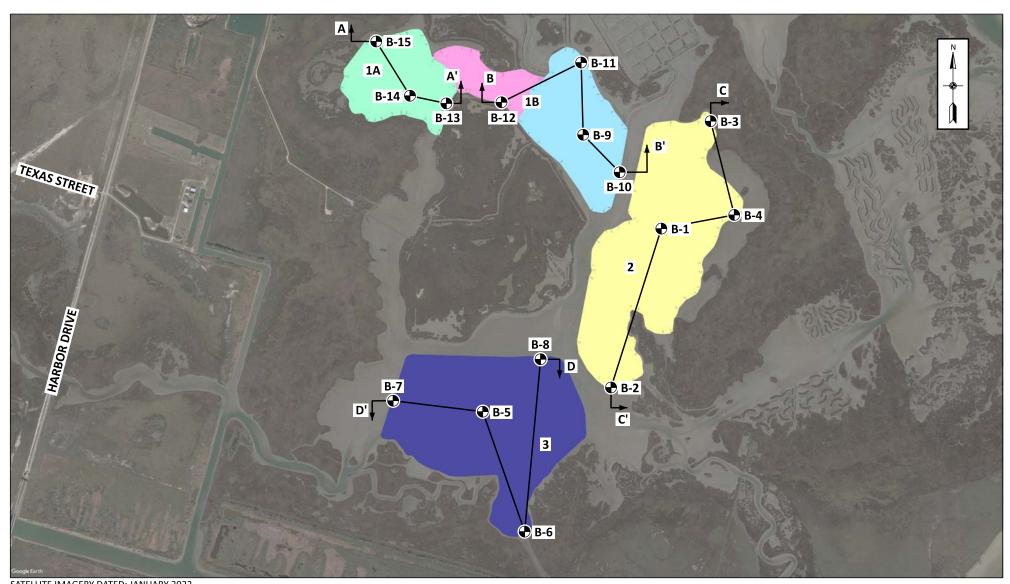
Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
0.75	22.0	66.0	60.4	0.0131	67.0	5.3	0.0349	85.4	14.6
1.25	22.0	62.0	56.4	0.0131	63.0	6.0	0.0286	79.8	20.2
2.00	22.0	57.0	51.4	0.0131	58.0	6.8	0.0242	72.7	27.3
5.00	22.0	46.0	40.4	0.0131	47.0	8.6	0.0172	57.1	42.9
15.00	22.0	32.0	26.4	0.0131	33.0	10.9	0.0112	37.3	62.7
30.00	22.0	28.0	22.4	0.0131	29.0	11.5	0.0081	31.7	68.3
60.00	22.0	23.0	17.4	0.0131	24.0	12.4	0.0060	24.6	75.4

_ Eustis Engineering L.L.C. _____

	Hydrometer Test Data (continued)										
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained		
120.00	22.0	22.0	16.4	0.0131	23.0	12.5	0.0042	23.2	76.8		
262.50	22.7	21.0	15.6	0.0130	22.0	12.7	0.0029	22.0	78.0		
1440.00	22.0	19.0	13.4	0.0131	20.0	13.0	0.0012	19.0	81.0		


Fractional Components

Cabbles		Gravel			Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.4	75.8	23.8	99.6

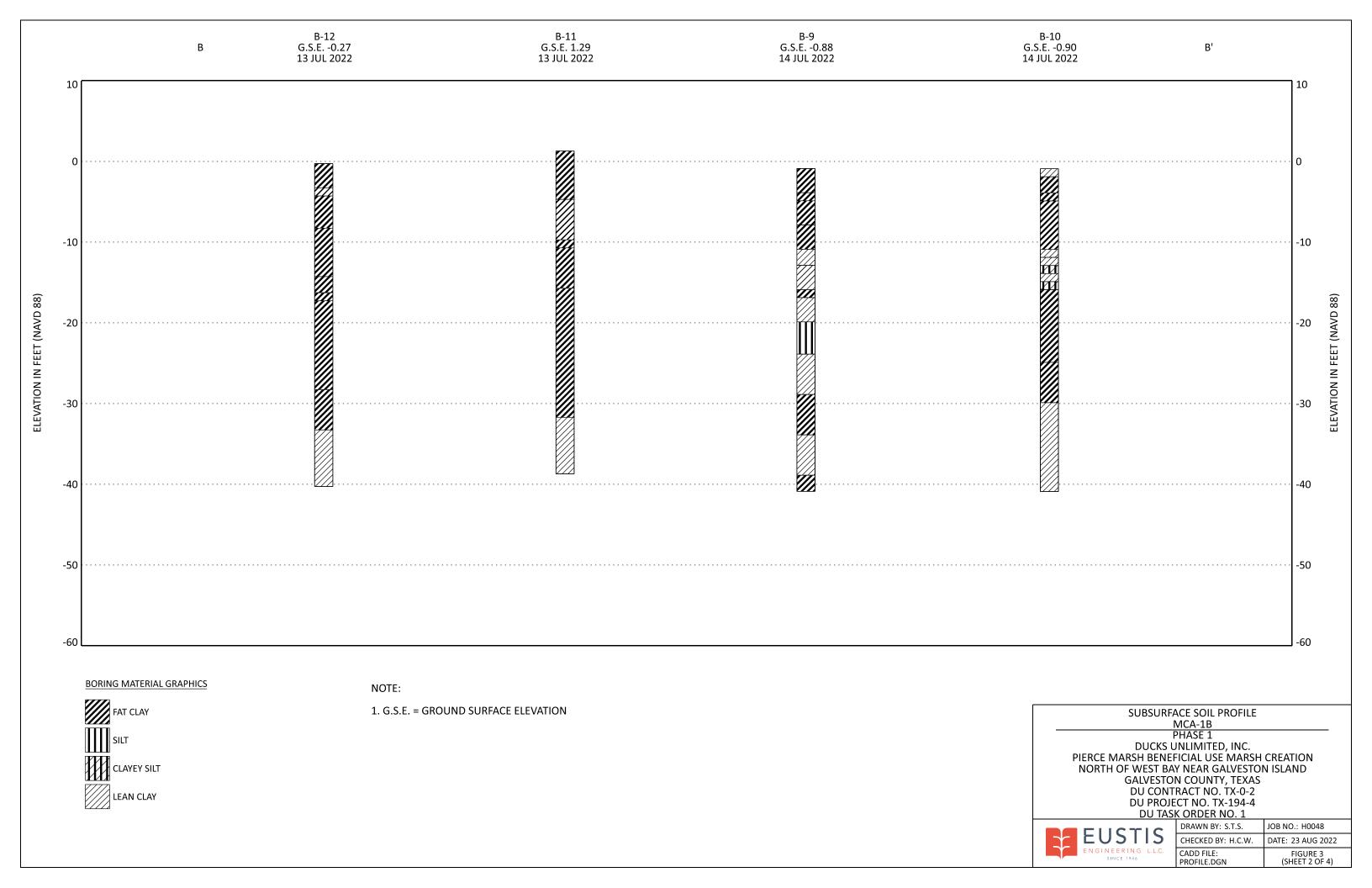
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0016	0.0079	0.0120	0.0149	0.0182	0.0288	0.0343	0.0420	0.0528

Fineness Modulus 0.00

_____ Eustis Engineering L.L.C. _____

SATELLITE IMAGERY DATED: JANUARY 2022

NOT TO SCALE


DENOTES APPROXIMATE LOCATIONS OF SOIL BORINGS DRILLED BETWEEN 11 AND 18 JULY 2022

BORING LOCATION PLAN

PHASE 1
DUCKS UNLIMITED, INC.
PIERCE MARSH BENEFICIAL USE MARSH CREATION
NORTH OF WEST BAY NEAR GALVESTON ISLAND
GALVESTON COUNTY, TEXAS
DU CONTRACT NO. TX-0-2
DU PROJECT NO. TX-194-4
DU TASK ORDER NO. 1

K ORDER NO. 1	
DRAWN BY: S.T.S.	JOB NO.: H0048
CHECKED BY: H.C.W.	DATE: 15 AUG 2022
CADD FILE: LOCATION PLAN.DGN	FIGURE 2

LEGEND AND NOTES FOR LOG OF BORING AND TEST RESULTS

PP Pocket penetrometer: Resistance in tons per square foot Standard Penetration Test: Number of blows of a 140-lb hammer dropped 30 inches required to SPT drive 2-in. O.D., 1.4-in. I.D. sampler a distance of 1 foot into the soil after first seating it 6 inches. Values shown have not been corrected. Shelby SPT Auger Uvibracore Type of Sampling **SPLR** SYMBOL Clay Silt Peat/Humus Shells Stone/Gravel Sand Predominant type shown heavy; modifying type shown light USC **Unified Soil Classification**

SHEAR TESTS

TYPE

UC Unconfined compression shear

DENSITY Unit weight in pounds per cubic foot

OB Unconsolidated undrained triaxial compression shear on one specimen confined at the approximate overburden pressure

UU Unconsolidated undrained triaxial compression shear

φ Angle of internal friction in degrees

c Cohesion in pounds per square foot

ATTERBERG LIMITS

LL Liquid Limit

PL Plastic Limit

PI Plasticity Index

OTHER TESTS

CON Consolidation

-#200 Percent passing a U.S. No. 200 sieve

SV Particle size distribution (sieve only)

PD Particle size distribution (sieve and hydrometer)

k Coefficient of permeability in centimeters per second

SP Swelling pressure in pounds per square foot

Other laboratory test results reported on separate figures

GENERAL NOTES

- (1) If a ground water depth is shown on the boring log, these observations were made at the time of drilling and were measured below the existing ground surface. These observations are shown on the boring logs. However, ground water levels may vary due to seasonal fluctuations and other factors. If important to construction, the depth to ground water should be determined by those persons responsible for construction immediately prior to beginning work.
- (2) While the individual logs of borings are considered to be representative of subsurface conditions at their respective locations on the dates shown, it is not warranted that they are representative of subsurface conditions at other locations and times.