

Aptim Environmental & Infrastructure, LLC

6401 Congress Avenue, Suite 140 Boca Raton, Florida 33487 Phone # 1-561-391-8102

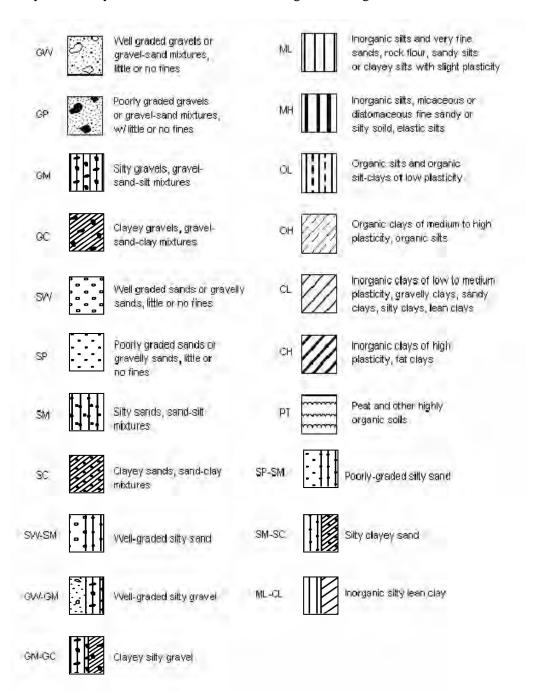
Legend for Geotechnical Data

Grain Size Scale for Sediments

Unified Soil Classification		APTIM Standard Sieve Stack					
System (USCS) (ASTM D2487/2488)		Sieve Number	Size (phi)	Size (mm)			
	Coarse Gravel	3/4	-4.25	19.03			
	Fine Gravel	5/8	-4.00	16.00			
Gravel		7/16	-3.50	11.20			
Glavei		5/16	-3.00	8.00			
		3 ½	-2.50	5.60			
		4	-2.25	4.75			
	Coarse Sand	5	-2.00	4.00			
		7	-1.50	2.80			
		10	-1.00	2.00			
	Medium Sand	14	-0.50	1.40			
Sand		18	0.00	1.00			
		25	0.50	0.71			
		35	1.00	0.50			
	Fine Sand	45	1.50	0.36			
		60	2.00	0.25			
		80	2.50	0.18			
		120	3.00	0.13			
		170	3.50	0.09			
		200	3.75	0.08			
Fines	Silt/Clay	230	4.00	0.06			

Proportional Definition of Descriptive Terms

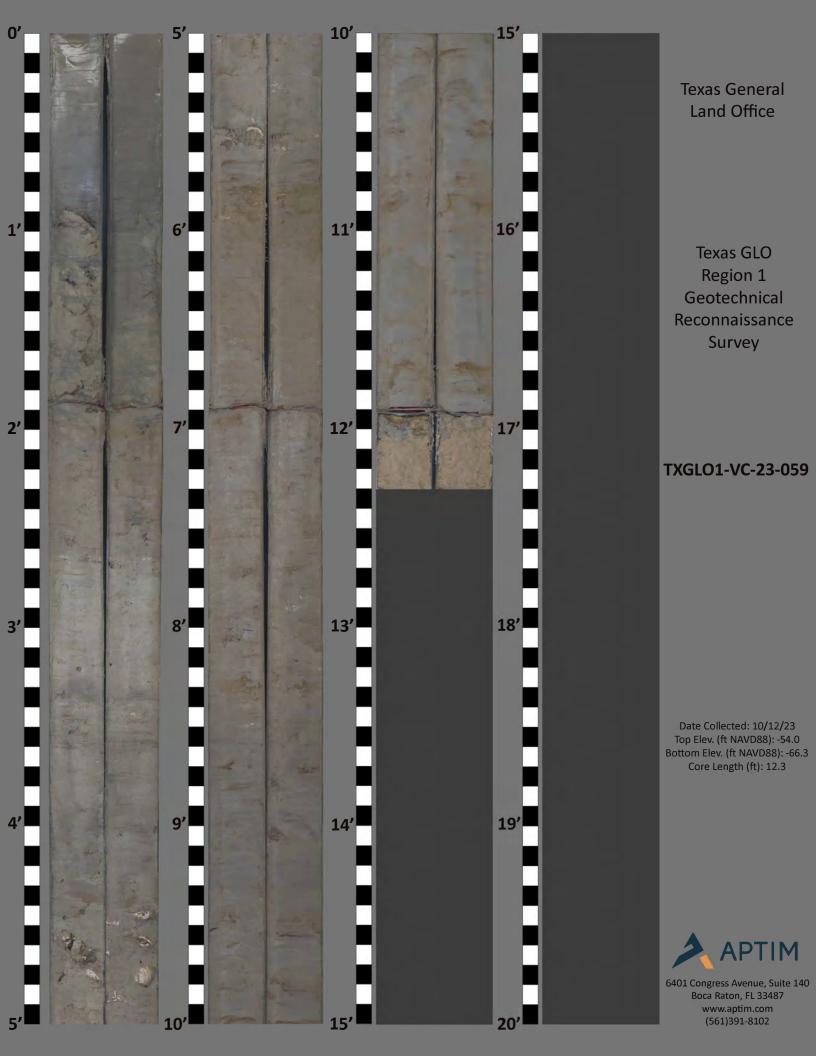
<u>Descriptive Term</u>	Range of Proportions
Sandy, gravelly, etc.	35 % to 50 %
Some	20 % to 35 %
Little	10 % to 20 %
Trace	1 % to 10 %


Consistency of Cohesive Soils

Description	Consistency Index	Approximate Undrained Shear Strength (kPa)	Field Identification
Hard		Over 300	Indented with difficulty by thumbnail, brittle.
Very Stiff	>1	150-300	Readily indented by thumbnail, still very tough.
Stiff	0.75-1	75-150	Readily indented by thumb but penetrated only with difficulty. Cannot be moulded in the fingers.
Firm	0.5-0.75	40-75	Can be penetrated several centimeters by thumb with moderate effort and moulded in fingers by strong pressure.
Soft	< 0.5	20-40	Easily penetrated several centimeters by thumb, easily moulded.
Very Soft		Less than 20	Easily penetrated several centimeters by fist, exudes between fingers when squeezed in fist.

Source: Engineering Properties of Soils and Rocks, Fourth Edition by Fred G. Bell

USCS Classifications


Refers to the Army Corps of Engineers Unified Soils Classification System. Class types are defined primarily by grain size, sorting and percent of material passing the #200 sieve. Classification of materials on the core logs based on visual field examinations are identified on the core logs under the Classification of Materials Description. Classifications based on laboratory sieve analyses are identified on the core logs in the Legend and under Remarks.

Note: Information is after ACOE Atlantic Division Manual # 1110-1-1 titled Engineering and Design Geotechnical Manual for Surface and Subsurface Investigations

Boring Designation TXGLO1-VC-23-059

1. PRO		on 1 Re	econ Geotechnical Sand Search		SIZE AND TYP	PE OF BIT 3.0 In. E SYSTEM/DATUM HORIZONTAL VERTICAL		
			, Galveston and Brazoria Co. APTIM	10.		te Plane South NAD 1983 NAVD8		
	RING DESIG		!	11.		RER'S DESIGNATION OF DRILL AUTO HAMM		
	TXGLO1-V		59 X = 3,347,678 Y = 13,638,580 CONTRACTOR FILE NO.		APTIM SE	EAS VC-700 Vibracore MANUAL HA		
	APTIM			12.	TOTAL SAMP	PLES 0 5		
	ME OF DRILL	LER		13.	TOTAL NUMI	BER CORE BOXES		
	APTIM ECTION OF	BORIN	G DEG. FROM BEARING	14. ELEVATION GROUND WATER				
\boxtimes	VERTICAL		VERTICAL	15.	DATE BORIN	STARTED COMPLETED		
	CKNESS OF	OVER	! ! ! BURDEN 0.0 Ft.	16.	ELEVATION .	10-12-23 10-12-23 TOP OF BORING -54.0 Ft.		
	TH DRILLE			17.	TOTAL RECO	OVERY FOR BORING 12.3 Ft.		
	TAL DEPTH			18.	SIGNATURE SM	AND TITLE OF INSPECTOR		
		Q		Т		T		
ELEV. (ft) -54.0	DEPTH (ft) 0.0	LEGEND	CLASSIFICATION OF MATERIALS Depths and elevations based on measured value	s	SEC. SAMPLE	REMARKS The USCS classification system defines silt as percent passing the No.200 (0.075 mm) siev		
-54.9	0.0		LEAN CLAY, very soft, trace silt, silt distributed in laminae, olive gray (5Y-4/2), (CL).	1				
-04.0	- 0.0		FAT CLAY, stiff, trace silt, silt distributed in laminae and throughout layer, color is mottled gray (5Y-5/1)		T1	Sample #T1, Depth = 1.6'		
-56.0 -56.6	2.0		and clive (SY-5/3), (CH). FAT CLAY, very stiff, trace silt, light olive brown		T2	Ave. Field Vane (tsf): 0.15 Sample #T2, Depth = 2.3'		
-50.0	- 2.0		(2.5Y-5/3), (CH). FAT CLAY, very stiff, trace shell hash, trace silt, 0.25			Ave. Field Vane (tsf): 0.26		
== :	<u> </u>		shell hash pockets @ 3.4' and 3.8', light brownish gra (2.5Y-6/2), (CH).		Т3	Sample #T3, Depth = 3.5' Ave. Field Vane (tsf): 0.20		
-58.4	4.4		FAT CLAY, hard, little silt, trace shell fragments, trace	-		Sample #T4, Depth = 5.2'		
-59.7	5.7		whole shell, silt decreases with depth in layer, shell fragments are bivalve fragments up to 1.0", whole		T4	Ave. Field Vane (tsf): 0.41		
	-		shells are whole bivalves typically up to 1.5", 2.5" pocket of whole bivalves @ 4.5', 1.75" whole bivalves @ 6.5" in the state of the s					
04.7	-		@ 4.7', 1.5" pocket of whole bivalves @ 5.5', light brownish gray (2.5Y-6/2), (CH).]				
-61.7	7.7		Clayey SILT, trace sand, fine grained, quartz, trace shell hash, clay increases with depth in layer, light	I		1		
	-		olive brown (2.5Y-5/4), (ML). FAT CLAY, hard, little rock fragments, trace sand, fine					
	L		grained, quartz, trace shell hash, trace silt, hardness increases with depth in layer, sand increases with depth in layer, silt decreases with depth in layer,		T5	Sample #T5, Depth = 10.0' Ave. Field Vane (tsf): 0.72		
			oxidation throughout layer, rock fragments are potentially gypsum distributed in pockets up to 2.5"			Ave. Field Varie (ISI). 0.72		
	10.0		decreasing with depth in layer, shell hash distributed					
-66.0 -66.3	12.0 12.3	//	between 7.7' & 8.2', gray (2.5Y-5/1), (CH). SAND, fine grained, quartz, trace clay, trace silt, Bit	\neg		1		
	-		sample from 11.9 to 12.3', light olive brown (2.5Y-5/6), (SP).] [
	-		No recovery.					
-68.7	14.7	+		-				
			End of Boring					
	<u> </u>							
	 							
	-							
	L							
	<u> </u>							
	 							
	-							
1	1	1 1				1		

Mini Vane Shear Test Results

	SAMPLE DEPTH	TORVANE	TORVANE	TORVANE		
CORE ID	(ft)	(kg/cm²)	(tsf)	(kpa)	DESCRIPTION ¹	
	1.6	1.5	0.15	147.10	Stiff	
TXGLO1-VC-23-059	2.3	2.5	0.26	245.17	Very Stiff	
	3.5	2.0	0.20	196.13	Very Stiff	
	5.2	4.0	0.41	392.27	Hard	
	10.0	7.0	0.72	686.47	Hard	
	2.4	6.5	0.67	637.43	Hard	
TXGLO1-VC-23-060	11.1	1.5	0.15	147.10	Stiff	
1XGLU1-VC-23-000	13.1	6.0	0.61	588.40	Hard	
	17.0	6.0	0.61	588.40	Hard	
TXGLO1-VC-23-061		No Tor	vane Conducte	ed		
	1.0	0.3	0.03	24.52	Soft	
TXGLO1-VC-23-062	2.6	1.0	0.10	98.07	Stiff	
	5.0	4.0	0.41	392.27	Hard	
	1.5	4.5	0.46	441.30	Hard	
TXGLO1-VC-23-063	5.0	2.5	0.26	245.17	Very Stiff	
1XGLU1-VC-23-003	11.0	2.8	0.28	269.68	Very Stiff	
	15.0	2.5	0.26	245.17	Very Stiff	
	0.3	0.0	0.00	0.00	Very Soft	
TXGLO1-VC-23-064	0.7	0.5	0.05	49.03	Firm	
	13.1	2.5	0.26	245.17	Very Stiff	
TVCI 04 VC 22 0CF	1.8	2.0	0.20	196.13	Very Stiff	
TXGLO1-VC-23-065	6.1	1.3	0.13	122.58	Stiff	
	0.5	0.3	0.03	24.52	Soft	
TXGLO1-VC-23-066	3.1	1.5	0.15	147.10	Stiff	
	13.0	5.5	0.56	539.37	Hard	
TXGLO1-VC-23-067	0.1	0.0	0.00	0.00	Very Soft	
1XGLO1-VC-23-007	3.0	0.5	0.05	49.03	Firm	
	0.3	0.3	0.03	24.52	Soft	
	3.5	1.5	0.15	147.10	Stiff	
TXGLO1-VC-23-068	7.4	3.0	0.31	294.20	Very Stiff	
	11.2	7.8	0.79	760.02	Hard	
	15.0	8.0	0.82	784.53	Hard	
TYGLO1-VC 22 060	0.4	0.0	0.00	0.00	Very Soft	
TXGLO1-VC-23-069	3.5	0.8	0.08	73.55	Firm	
	0.7	0.3	0.03	24.52	Soft	
	1.9	2.0	0.20	196.13	Very Stiff	
TXGLO1-VC-23-070	3.3	2.0	0.20	196.13	Very Stiff	
	5.5	3.5	0.36	343.23	Hard	
	11.9	0.0	0.00	0.00	Very Soft	